Why Swift at least should be faster than Objective C

In sections Optionals and Chaining and Value types there is an answer to a post topic question – Why Swift at least should be faster than Objective C

https://en.wikipedia.org/wiki/Swift_(programming_language)

Using guard has three benefits. While the syntax can act as an if statement, its primary benefit is inferring non-nullability. Where an if statement requires a case, guard assumes the case based on the condition provided. Also, since guard contains no scope, with exception of the else closure, leaseStart is presented as an unwrapped optional to the guard’s super-scope. Lastly, if the guard statement’s test fails, Swift requires the else to exit the current method or loop, ensuring leaseStart never is accessed when nil. This is performed with the keywords return, continue, break, or throw.
ObjC was weakly typed, and allowed any method to be called on any object at any time. If the method call failed, there was a default handler in the runtime that returned nil. That meant that no unwrapping or testing was needed, the equivalent statement in ObjC:

leaseStart = [[[aBuilding tenantList:5] leaseDetails] startDate]

would return nil and this could be tested. However, this also demanded that all method calls be dynamic, which introduces significant overhead. Swift’s use of optionals provides a similar mechanism for testing and dealing with nils, but does so in a way that allows the compiler to use static dispatch because the unwrapping action is called on a defined instance (the wrapper), versus occurring in the runtime dispatch system.

The programmer is free to choose which semantics are more appropriate for each data structure in the application. Larger structures like windows would be defined as classes, allowing them to be passed around as pointers. Smaller structures, like a 2D point, can be defined as structs, which will be pass-by-value and allow direct access to their internal data with no dereference. The performance improvement inherent to the pass-by-value concept is such that Swift uses these types for almost all common data types, including Int and Double, and types normally represented by objects, like String and Array.[41] Using value types can result in significant performance improvements in user applications also.[42]

To ensure that even the largest structs do not cause a performance penalty when they are handed off, Swift uses copy on write so that the objects are copied only if and when the program attempts to change a value in them. This means that the various accessors have what is in effect a pointer to the same data storage, but this takes place far below the level of the language, in the computer’s memory management unit (MMU). So while the data is physically stored as one instance in memory, at the level of the application, these values are separate, and physical separation is enforced by copy on write only if needed.[43]

Leave a Reply

Your email address will not be published. Required fields are marked *